MiR-206-mediated dynamic mechanism of the mammalian circadian clock

Author:

Zhou Wei,Li Yan,Wang Xia,Wu Lianqi,Wang Yonghua

Abstract

Abstract Background As a group of highly conserved small non-coding RNAs with a length of 21~23 nucleotides, microRNAs (miRNAs) regulate the gene expression post-transcriptionally by base pairing with the partial or full complementary sequences in target mRNAs, thus resulting in the repression of mRNA translation and the acceleration of mRNA degradation. Recent work has revealed that miRNAs are essential for the development and functioning of the skeletal muscles where they are. In particular, miR-206 has not only been identified as the only miRNA expressed in skeletal muscles, but also exhibited crucial roles in regulation of the muscle development. Although miRNAs are known to regulate various biological processes ranging from development to cancer, much less is known about their role in the dynamic regulation of the mammalian circadian clock. Results A detailed dynamic model of miR-206-mediated mammalian circadian clock system was developed presently by using Hill-type terms, Michaelis-Menten type and mass action kinetics. Based on a system-theoretic approach, the model accurately predicts both the periodicity and the entrainment of the circadian clock. It also explores the dynamics properties of the oscillations mediated by miR-206 by means of sensitivity analysis and alterations of parameters. Our results show that miR-206 is an important regulator of the circadian clock in skeletal muscle, and thus by study of miR-206 the main features of its mediation on the clock may be captured. Simulations of these processes display that the amplitude and frequency of the oscillation can be significantly altered through the miR-206-mediated control. Conclusions MiR-206 has a profound effect on the dynamic mechanism of the mammalian circadian clock, both by control of the amplitude and control or alteration of the frequency to affect the level of the gene expression and to interfere with the temporal sequence of the gene production or delivery. This undoubtedly uncovers a new mechanism for regulation of the circadian clock at a post-transcriptional level and provides important insights into the normal development as well as the pathological conditions of skeletal muscles, such as the aging, chronic disease and cancer.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Reference55 articles.

1. Hall J: Genetics and molecular biology of rhythms in Drosophila and other insects. Elsevier Science, New York. 2003,

2. Dolatshad H, Cary AJ, Davis FC: Differential expression of the circadian clock in maternal and embryonic tissues of mice. PLoS ONE. 2010, 5 (3): e9855- 10.1371/journal.pone.0009855

3. Dunlap JC, Loros JJ, DeCoursey PT, : Chronobiology: Biological timekeeping. Sunderland (Massachusetts). Sinauer Associates. 2004, 406

4. Lewy AJ, Lefler BJ, Emens JS, Bauer VK: The circadian basis of winter depression. Proc Natl Acad Sci USA. 2006, 19: 7415-7419.

5. Youan BC: Chronopharmaceutics: Gimmick or clinically relevant approach to drug delivery?. J Control Release. 2004, 98: 337-353. 10.1016/j.jconrel.2004.05.015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3