The crosstalk between EGF, IGF, and Insulin cell signaling pathways - computational and experimental analysis

Author:

Zielinski Rafal,Przytycki Pawel F,Zheng Jie,Zhang David,Przytycka Teresa M,Capala Jacek

Abstract

Abstract Background Cellular response to external stimuli requires propagation of corresponding signals through molecular signaling pathways. However, signaling pathways are not isolated information highways, but rather interact in a number of ways forming sophisticated signaling networks. Since defects in signaling pathways are associated with many serious diseases, understanding of the crosstalk between them is fundamental for designing molecularly targeted therapy. Unfortunately, we still lack technology that would allow high throughput detailed measurement of activity of individual signaling molecules and their interactions. This necessitates developing methods to prioritize selection of the molecules such that measuring their activity would be most informative for understanding the crosstalk. Furthermore, absence of the reaction coefficients necessary for detailed modeling of signal propagation raises the question whether simple parameter-free models could provide useful information about such pathways. Results We study the combined signaling network of three major pro-survival signaling pathways: E pidermal G rowth F actor R eceptor (EGFR), I nsulin-like G rowth F actor-1 R eceptor (IGF-1R), and I nsulin R eceptor (IR). Our study involves static analysis and dynamic modeling of this network, as well as an experimental verification of the model by measuring the response of selected signaling molecules to differential stimulation of EGF, IGF and insulin receptors. We introduced two novel measures of the importance of a node in the context of such crosstalk. Based on these measures several molecules, namely Erk1/2, Akt1, Jnk, p70S6K, were selected for monitoring in the network simulation and for experimental studies. Our simulation method relies on the Boolean network model combined with stochastic propagation of the signal. Most (although not all) trends suggested by the simulations have been confirmed by experiments. Conclusion The simple model implemented in this paper provides a valuable first step in modeling signaling networks. However, to obtain a fully predictive model, a more detailed knowledge regarding parameters of individual interactions might be necessary.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modelling and Simulation,Structural Biology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3