Phenotype prediction in regulated metabolic networks

Author:

Kaleta Christoph,Centler Florian,di Fenizio Pietro Speroni,Dittrich Peter

Abstract

Abstract Background Due to the growing amount of biological knowledge that is incorporated into metabolic network models, their analysis has become more and more challenging. Here, we examine the capabilities of the recently introduced chemical organization theory (OT) to ease this task. Considering only network stoichiometry, the theory allows the prediction of all potentially persistent species sets and therewith rigorously relates the structure of a network to its potential dynamics. By this, the phenotypes implied by a metabolic network can be predicted without the need for explicit knowledge of the detailed reaction kinetics. Results We propose an approach to deal with regulation – and especially inhibitory interactions – in chemical organization theory. One advantage of this approach is that the metabolic network and its regulation are represented in an integrated way as one reaction network. To demonstrate the feasibility of this approach we examine a model by Covert and Palsson (J Biol Chem, 277(31), 2002) of the central metabolism of E. coli that incorporates the regulation of all involved genes. Our method correctly predicts the known growth phenotypes on 16 different substrates. Without specific assumptions, organization theory correctly predicts the lethality of knockout experiments in 101 out of 116 cases. Taking into account the same model specific assumptions as in the regulatory flux balance analysis (rFBA) by Covert and Palsson, the same performance is achieved (106 correctly predicted cases). Two model specific assumptions had to be considered: first, we have to assume that secreted molecules do not influence the regulatory system, and second, that metabolites with increasing concentrations indicate a lethal state. Conclusion The introduced approach to model a metabolic network and its regulation in an integrated way as one reaction network makes organization analysis a universal technique to study the potential behavior of biological network models. Applying multiple methods like OT and rFBA is shown to be valuable to uncover critical assumptions and helps to improve model coherence.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3