Author:
Huang Yu-Feng,Chen Sheng-Chung,Chiang Yih-Shien,Chen Tzu-Han,Chiu Kuo-Ping
Abstract
Abstract
Background
Current next-generation sequencing (NGS) platforms adopt two types of sequencing mechanisms: by synthesis or by ligation. The former is employed by 454 and Solexa systems, while the latter by SOLiD system. Although the pros and cons for each sequencing mechanism have more or less been discussed in a number of occasions, the potential obstacle imposed by palindromic sequences has not yet been addressed.
Methods
To test the effect of the palindromic region on sequencing efficacy, we clonally amplified a paired-end ditag sequence composed of a 24-bp palindromic sequence flanked by a pair of tags from the E. coli genome. We used the near homogeneous fragments produced from Mme I digestion of the amplified clone to generate a sequencing library for SOLiD 5500xl sequencer.
Results
Results showed that, traditional ABI sequencers, which adopt sequencing-by-synthesis mechanism, were able to read through the palindromic region. However, SOLiD 5500xl was unable to do so. Instead, the palindromic region was read as miscellaneous random sequences. Moreover, readable tag sequence turned obscure ~2 bp prior to the palindromic region.
Conclusions
Taken together, we demonstrate that SOLiD machines, which employ sequencing-by-ligation mechanism, are unable to read through the palindromic region. On the other hand, sequencing-by-synthesis sequencers had no difficulty in doing so.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献