Systematic variations associated with renal disease uncovered by parallel metabolomics of urine and serum

Author:

Gao Xianfu,Chen Wanjia,Li Rongxia,Wang Minfeng,Chen Chunlei,Zeng Rong,Deng Yueyi

Abstract

Abstract Background Membranous nephropathy is an important glomerular disease characterized by podocyte injury and proteinuria, but no metabolomics research was reported as yet. Here, we performed a parallel metabolomics study, based on human urine and serum, to comprehensively profile systematic metabolic variations, identify differential metabolites, and understand the pathogenic mechanism of membranous nephropathy. Results There were obvious metabolic distinctions between the membranous nephropathy patients with urine protein lower than 3.5 g/24 h (LUPM) and those higher than 3.5 g/24 h (HUPM) by Partial Least Squares Discriminant Analysis (PLS-DA) model analysis. In total, 26 urine metabolites and 9 serum metabolites were identified to account for such differences, and the majority of metabolites were significantly increased in HUPM patients for both urines and serums. Combining the results of urine with serum, all differential metabolites were classified to 5 classes. This classification helps globally probe the systematic metabolic alterations before and after blood flowing through kidney. Citric acid and 4 amino acids were markedly increased only in the serum samples of HUPM patients, implying more impaired filtration function of kidneys of HUPM patients than LUPM patients. The dicarboxylic acids, phenolic acids, and cholesterol were significantly elevated only in urines of HUPM patients, suggesting more severe oxidative attacks than LUPM patients. Conclusions Parallel metabolomics of urine and serum revealed the systematic metabolic variations associated with LUPM and HUPM patients, where HUPM patients suffered more severe injury of kidney function and oxidative stresses than LUPM patients. This research exhibited a promising application of parallel metabolomics in renal diseases.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3