Author:
de Matos Simoes Ricardo,Tripathi Shailesh,Emmert-Streib Frank
Abstract
Abstract
Background
The physical periphery of a biological cell is mainly described by signaling pathways which are triggered by transmembrane proteins and receptors that are sentinels to control the whole gene regulatory network of a cell. However, our current knowledge about the gene regulatory mechanisms that are governed by extracellular signals is severely limited.
Results
The purpose of this paper is three fold. First, we infer a gene regulatory network from a large-scale B-cell lymphoma expression data set using the C3NET algorithm. Second, we provide a functional and structural analysis of the largest connected component of this network, revealing that this network component corresponds to the peripheral region of a cell. Third, we analyze the hierarchical organization of network components of the whole inferred B-cell gene regulatory network by introducing a new approach which exploits the variability within the data as well as the inferential characteristics of C3NET. As a result, we find a functional bisection of the network corresponding to different cellular components.
Conclusions
Overall, our study allows to highlight the peripheral gene regulatory network of B-cells and shows that it is centered around hub transmembrane proteins located at the physical periphery of the cell. In addition, we identify a variety of novel pathological transmembrane proteins such as ion channel complexes and signaling receptors in B-cell lymphoma.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modelling and Simulation,Structural Biology
Reference69 articles.
1. Guelzim N, Bottani S, Bourgine P, Kepes F: Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 2002, 31: 60. 10.1038/ng873
2. Stolovitzky G, Califano A (Eds): Reverse Engineering Biological Networks: Opportunities and Challenges in Computational Methods for Pathway Inference. Malden:Wiley-Blackwell; 2007.
3. Xing B, van der Laan M: A causal inference approach for constructing transcriptional regulatory networks. Bioinformatics 2005,21(21):4007. 10.1093/bioinformatics/bti648
4. Barabási AL, Oltvai ZN: Network Biology: Understanding the Cell’s Functional Organization. Nat Rev 2004, 5: 101. 10.1038/nrg1272
5. Emmert-Streib F, Glazko G: Network biology: A direct approach to study biological function. Wiley Interdiscip Rev Syst Biol Med 2010,3(4):379.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献