Detection of protein complexes from affinity purification/mass spectrometry data
-
Published:2012-12
Issue:S3
Volume:6
Page:
-
ISSN:1752-0509
-
Container-title:BMC Systems Biology
-
language:en
-
Short-container-title:BMC Syst Biol
Author:
Cai Bingjing,Wang Haiying,Zheng Huiru,Wang Hui
Abstract
Abstract
Background
Recent advances in molecular biology have led to the accumulation of large amounts of data on protein-protein interaction networks in different species. An important challenge for the analysis of these data is to extract functional modules such as protein complexes and biological processes from networks which are characterised by the present of a significant number of false positives. Various computational techniques have been applied in recent years. However, most of them treat protein interaction as binary. Co-complex relations derived from affinity purification/mass spectrometry (AP-MS) experiments have been largely ignored.
Methods
This paper presents a new algorithm for detecting protein complexes from AP-MS data. The algorithm intends to detect groups of prey proteins that are significantly co-associated with the same set of bait proteins. We first construct AP-MS data as a bipartite network, where one set of nodes consists of bait proteins and the other set is composed of prey proteins. We then calculate pair-wise similarities of bait proteins based on the number of their commonly shared neighbours. A hierarchical clustering algorithm is employed to cluster bait proteins based on the similarities and thus a set of 'seed' clusters is obtained. Starting from these 'seed' clusters, an expansion process is developed to identify prey proteins which are significantly associated with the same set of bait proteins. Then, a set of complete protein complexes is derived. In application to two real AP-MS datasets, we validate biological significance of predicted protein complexes by using curated protein complexes and well-characterized cellular component annotation from Gene Ontology (GO). Several statistical metrics have been applied for evaluation.
Results
Experimental results show that, the proposed algorithm achieves significant improvement in detecting protein complexes from AP-MS data. In comparison to the well-known MCL algorithm, our algorithm improves the accuracy rate by about 20% in detecting protein complexes in both networks and increases the F-Measure value by about 50% in Krogan_2006 network. Greater precision and better accuracy have been achieved and the identified complexes are demonstrated to match well with existing curated protein complexes.
Conclusions
Our study highlights the significance of taking co-complex relations into account when extracting protein complexes from AP-MS data. The algorithm proposed in this paper can be easily extended to the analysis of other biological networks which can be conveniently represented by bipartite graphs such as drug-target networks.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modelling and Simulation,Structural Biology
Reference36 articles.
1. Ghavidel A, Cagney G, Emili A: A skeleton of the human protein interactome. Cell. 2005, 122 (6): 830-2. 10.1016/j.cell.2005.09.006. 2. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA. 2001, 98 (8): 4569-4574. 10.1073/pnas.061034498. 3. Uetz P, Glot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000, 403 (6770): 623-627. 10.1038/35001009. 4. Gavin AC, Bösche M, Krause R, Grandl P, Marzloch M, Baer A, Schultz J, Rick JM, Mlchon AM, Cruclat CM, Remor M, Höfert C, Schelder M, Brajenovlc M, Ruffner H, Merlno A, Klein K, Hudak M, Dickson D, Rudl T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtler MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Ralda M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002, 415 (6868): 141-7. 10.1038/415141a. 5. Gavin A, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M, Hoffman V, Hoefert C, Klein K: Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006, 440 (7084): 631-6. 10.1038/nature04532.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|