The last generation of bacterial growth in limiting nutrient

Author:

Bren Anat,Hart Yuval,Dekel Erez,Koster Daniel,Alon Uri

Abstract

Abstract Background Bacterial growth as a function of nutrients has been studied for decades, but is still not fully understood. In particular, the growth laws under dynamically changing environments have been difficult to explore, because of the rapidly changing conditions. Here, we address this challenge by means of a robotic assay and measure bacterial growth rate, promoter activity and substrate level at high temporal resolution across the entire growth curve in batch culture. As a model system, we study E. coli growing under nitrogen or carbon limitation, and explore the dynamics in the last generation of growth where nutrient levels can drop rapidly. Results We find that growth stops abruptly under limiting nitrogen or carbon, but slows gradually when nutrients are not limiting. By measuring growth rate at a 3 min time resolution, and inferring the instantaneous substrate level, s, we find that the reduction in growth rate μ under nutrient limitation follows Monod’s law, μ = μ 0 s k s + s . By following promoter activity of different genes we found that the abrupt stop of growth under nitrogen or carbon limitation is accompanied by a pulse-like up-regulation of the expression of genes in the relevant nutrient assimilation pathways. We further find that sharp stop of growth is conditional on the presence of regulatory proteins in the assimilation pathway. Conclusions The observed sharp stop of growth accompanied by a pulsed expression of assimilation genes allows bacteria to compensate for the drop in nutrients, suggesting a strategy used by the cells to prolong exponential growth under limiting substrate.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3