A logic-based diagram of signalling pathways central to macrophage activation

Author:

Raza Sobia,Robertson Kevin A,Lacaze Paul A,Page David,Enright Anton J,Ghazal Peter,Freeman Tom C

Abstract

Abstract Background The complex yet flexible cellular response to pathogens is orchestrated by the interaction of multiple signalling and metabolic pathways. The molecular regulation of this response has been studied in great detail but comprehensive and unambiguous diagrams describing these events are generally unavailable. Four key signalling cascades triggered early-on in the innate immune response are the toll-like receptor, interferon, NF-κB and apoptotic pathways, which co-operate to defend cells against a given pathogen. However, these pathways are commonly viewed as separate entities rather than an integrated network of molecular interactions. Results Here we describe the construction of a logically represented pathway diagram which attempts to integrate these four pathways central to innate immunity using a modified version of the Edinburgh Pathway Notation. The pathway map is available in a number of electronic formats and editing is supported by yEd graph editor software. Conclusion The map presents a powerful visual aid for interpreting the available pathway interaction knowledge and underscores the valuable contribution well constructed pathway diagrams make to communicating large amounts of molecular interaction data. Furthermore, we discuss issues with the limitations and scalability of pathways presented in this fashion, explore options for automated layout of large pathway networks and demonstrate how such maps can aid the interpretation of functional studies.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework of Pinning Control for Nonperiodical Stable Behaviors of Large-Scale Asynchronous Boolean Networks;IEEE Transactions on Automatic Control;2024-09

2. Minimization of Dynamical Systems over Monoids;2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2023-06-26

3. Gene regulatory accelerators on cloud FPGA;Concurrency and Computation: Practice and Experience;2023-05-29

4. GraphML-SBGN bidirectional converter for metabolic networks;Journal of Integrative Bioinformatics;2022-12-01

5. The contribution of ion channels to shaping macrophage behaviour;Frontiers in Pharmacology;2022-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3