Author:
Cimini Donatella,Patil Kiran R,Schiraldi Chiara,Nielsen Jens
Abstract
Abstract
Background
Mitochondrial respiration is an important and widely conserved cellular function in eukaryotic cells. The succinate dehydrogenase complex (Sdhp) plays an important role in respiration as it connects the mitochondrial respiratory chain to the tricarboxylic acid (TCA) cycle where it catalyzes the oxidation of succinate to fumarate. Cellular response to the Sdhp dysfunction (i.e. impaired respiration) thus has important implications not only for biotechnological applications but also for understanding cellular physiology underlying metabolic diseases such as diabetes. We therefore explored the physiological and transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3, that codes for an essential subunit of the Sdhp.
Results
Although the Sdhp has no direct role in transcriptional regulation and the flux through the corresponding reaction under the studied conditions is very low, deletion of SDH3 resulted in significant changes in the expression of several genes involved in various cellular processes ranging from metabolism to the cell-cycle. By using various bioinformatics tools we explored the organization of these transcriptional changes in the metabolic and other cellular functional interaction networks.
Conclusion
Our results show that the transcriptional regulatory response resulting from the impaired respiratory function is linked to several different parts of the metabolism, including fatty acid and sterol metabolism.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology
Reference45 articles.
1. Krantz M, Hohmann S: Investigation of the link between the osmotic stress response and control of energy metabolism in baker's yeast, Saccharomyces cerevisiae. Yeast. 2003, 20: S170-
2. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al.: PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics. 2003, 34: 267-273.
3. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et al.: Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science. 2000, 287: 848-851.
4. Rotig A, Cormier V, Chatelain P, Francois R, Saudubray JM, Rustin P, et al.: Deletion of Mitochondrial-Dna in A Case of Early-Onset Diabetes-Mellitus, Optic Atrophy, and Deafness (Wolfram Syndrome, Mim 222300). Journal of Clinical Investigation. 1993, 91: 1095-1098.
5. Boudina S, Sena S, O'Neill BT, Tathireddy P, Young ME, Abel ED: Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation. 2005, 112: 2686-2695.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献