PathCase-SB architecture and database design

Author:

Cakmak Ali,Qi Xinjian,Coskun Sarp A,Das Mitali,Cheng En,Cicek A Ercument,Lai Nicola,Ozsoyoglu Gultekin,Ozsoyoglu Z Meral

Abstract

Abstract Background Integration of metabolic pathways resources and regulatory metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation in metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Description PathCase Systems Biology (PathCase-SB) is built and released. The PathCase-SB database provides data and API for multiple user interfaces and software tools. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate data of selected biological data sources on the web (currently, BioModels database and KEGG), and to provide more powerful and/or new capabilities via the new web-based integrative framework. This paper describes architecture and database design issues encountered in PathCase-SB's design and implementation, and presents the current design of PathCase-SB's architecture and database. Conclusions PathCase-SB architecture and database provide a highly extensible and scalable environment with easy and fast (real-time) access to the data in the database. PathCase-SB itself is already being used by researchers across the world.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modeling and Simulation,Structural Biology

Reference24 articles.

1. PathCase-SB. [http://nashua.case.edu/PathwaysSB/Web]

2. Elliott B, Kirac M, Cakmak A, Yavas G, Mayes S, Cheng E, Wang Y, Gupta C, Ozsoyoglu G, Ozsoyoglu ZM: PathCase: Pathways Database System. Bioinformatics. 2008, 24 (21): 2526-2533. 10.1093/bioinformatics/btn459.

3. Hucka M, Finney AM, Hoops S, Keating SM, Le Novere N: Systems Biology Markup Language (SBML) Level 2: Structures and Facilities for Model definitions. 2007

4. CELLML data repository. [http://www.cellml.org]

5. Lloyd CM, Halstead MDB, Nielsen PF: CellML: its future, present, and past. Progress in Biophysics and Molecular Biology. 2004, 85 (2-3): 433-450. 10.1016/j.pbiomolbio.2004.01.004.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DORMAN: Database of Reconstructed MetAbolic Networks;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2021-07-01

2. An online system for metabolic network analysis;Database;2014-09-29

3. A dedicated database system for handling multi-level data in systems biology;Source Code for Biology and Medicine;2014-07-10

4. PathCase-MAW;Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics;2013-09-22

5. An online model composition tool for system biology models;BMC Systems Biology;2013-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3