ExprEssence - Revealing the essence of differential experimental data in the context of an interaction/regulation net-work
-
Published:2010-11-30
Issue:1
Volume:4
Page:
-
ISSN:1752-0509
-
Container-title:BMC Systems Biology
-
language:en
-
Short-container-title:BMC Syst Biol
Author:
Warsow Gregor,Greber Boris,Falk Steffi SI,Harder Clemens,Siatkowski Marcin,Schordan Sandra,Som Anup,Endlich Nicole,Schöler Hans,Repsilber Dirk,Endlich Karlhans,Fuellen Georg
Abstract
Abstract
Background
Experimentalists are overwhelmed by high-throughput data and there is an urgent need to condense information into simple hypotheses. For example, large amounts of microarray and deep sequencing data are becoming available, describing a variety of experimental conditions such as gene knockout and knockdown, the effect of interventions, and the differences between tissues and cell lines.
Results
To address this challenge, we developed a method, implemented as a Cytoscape plugin called ExprEssence. As input we take a network of interaction, stimulation and/or inhibition links between genes/proteins, and differential data, such as gene expression data, tracking an intervention or development in time. We condense the network, highlighting those links across which the largest changes can be observed. Highlighting is based on a simple formula inspired by the law of mass action. We can interactively modify the threshold for highlighting and instantaneously visualize results. We applied ExprEssence to three scenarios describing kidney podocyte biology, pluripotency and ageing: 1) We identify putative processes involved in podocyte (de-)differentiation and validate one prediction experimentally. 2) We predict and validate the expression level of a transcription factor involved in pluripotency. 3) Finally, we generate plausible hypotheses on the role of apoptosis, cell cycle deregulation and DNA repair in ageing data obtained from the hippocampus.
Conclusion
Reducing the size of gene/protein networks to the few links affected by large changes allows to screen for putative mechanistic relationships among the genes/proteins that are involved in adaptation to different experimental conditions, yielding important hypotheses, insights and suggestions for new experiments. We note that we do not focus on the identification of 'active subnetworks'. Instead we focus on the identification of single links (which may or may not form subnetworks), and these single links are much easier to validate experimentally than submodules. ExprEssence is available at http://sourceforge.net/projects/expressence/.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Modelling and Simulation,Structural Biology
Reference63 articles.
1. Lu R, Markowetz F, Unwin RD, Leek JT, Airoldi EM, MacArthur BD, Lachmann A, Rozov R, Ma'ayan A, Boyer LA, Troyanskaya OG, Whetton AD, Lemischka IR: Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature. 2009, 462 (7271): 358-362. 10.1038/nature08575 2. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Sung KWK, Rigoutsos I, Loring J, Wei CL: Dynamic changes in the human methylome during differentiation. Genome Res. 2010, 20 (3): 320-331. 10.1101/gr.101907.109 3. Mortazavi A, Williams BA, McCue K, Schaeer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008, 5 (7): 621-628. 10.1038/nmeth.1226 4. Sultan M, Schulz MH, Richard H, Magen A, Klingenho A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O'Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008, 321 (5891): 956-960. 10.1126/science.1160342 5. Graumann J, Hubner NC, Kim JB, Ko K, Moser M, Kumar C, Cox J, Schöler H, Mann M: Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5, 111 proteins. Mol Cell Proteomics. 2008, 7 (4): 672-683.
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|