Functional pathway mapping analysis for hypoxia-inducible factors

Author:

Chuang Chia-Sheng,Pai Tun-Wen,Hu Chin-Hua,Tzou Wen-Shyong,Dah-Tsyr Chang Margaret,Chang Hao-Teng,Chen Chih-Chia

Abstract

Abstract Background Hypoxia-inducible factors (HIFs) are transcription factors that play a crucial role in response to hypoxic stress in living organisms. The HIF pathway is activated by changes in cellular oxygen levels and has significant impacts on the regulation of gene expression patterns in cancer cells. Identifying functional conservation across species and discovering conserved regulatory motifs can facilitate the selection of reference species for empirical tests. This paper describes a cross-species functional pathway mapping strategy based on evidence of homologous relationships that employs matrix-based searching techniques for identifying transcription factor-binding sites on all retrieved HIF target genes. Results HIF-related orthologous and paralogous genes were mapped onto the conserved pathways to indicate functional conservation across species. Quantitatively measured HIF pathways are depicted in order to illustrate the extent of functional conservation. The results show that in spite of the evolutionary process of speciation, distantly related species may exhibit functional conservation owing to conservative pathways. The novel terms OrthRate and ParaRate are proposed to quantitatively indicate the flexibility of a homologous pathway and reveal the alternative regulation of functional genes. Conclusion The developed functional pathway mapping strategy provides a bioinformatics approach for constructing biological pathways by highlighting the homologous relationships between various model species. The mapped HIF pathways were quantitatively illustrated and evaluated by statistically analyzing their conserved transcription factor-binding elements. Keywords hypoxia-inducible factor (HIF), hypoxia-response element (HRE), transcription factor (TF), transcription factor binding site (TFBS), KEGG (Kyoto Encyclopedia of Genes and Genomes), cross-species comparison, orthology, paralogy, functional pathway

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Modelling and Simulation,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3