Regional changes in brain metabolism during the progression of mild cognitive impairment: a longitudinal study based on radiomics

Author:

Mu Xuxu,Cui Caozhe,Liao Jue,Wu Zhifang,Hu LingzhiORCID

Abstract

Abstract Background This study aimed to establish radiomics models based on positron emission tomography (PET) images to longitudinally predict transition from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Methods In our study, 278 MCI patients from the ADNI database were analyzed, where 60 transitioned to AD (pMCI) and 218 remained stable (sMCI) over 48 months. Patients were divided into a training set (n = 222) and a validation set (n = 56). We first employed voxel-based analysis of 18F-FDG PET images to identify brain regions that present significant SUV difference between pMCI and sMCI groups. Radiomic features were extracted from these regions, key features were selected, and predictive models were developed for individual and combined brain regions. The models' effectiveness was evaluated using metrics like AUC to determine the most accurate predictive model for MCI progression. Results Voxel-based analysis revealed four brain regions implicated in the progression from MCI to AD. These include ROI1 within the Temporal lobe, ROI2 and ROI3 in the Thalamus, and ROI4 in the Limbic system. Among the predictive models developed for these individual regions, the model utilizing ROI4 demonstrated superior predictive accuracy. In the training set, the AUC for the ROI4 model was 0.803 (95% CI 0.736, 0.865), and in the validation set, it achieved an AUC of 0.733 (95% CI 0.559, 0.893). Conversely, the model based on ROI3 showed the lowest performance, with an AUC of 0.75 (95% CI 0.685, 0.809). Notably, the comprehensive model encompassing all identified regions (ROI total) outperformed the single-region models, achieving an AUC of 0.884 (95% CI 0.845, 0.921) in the training set and 0.816 (95% CI 0.705, 0.909) in the validation set, indicating significantly enhanced predictive capability for MCI progression to AD. Conclusion Our findings underscore the Limbic system as the brain region most closely associated with the progression from MCI to AD. Importantly, our study demonstrates that a PET brain radiomics model encompassing multiple brain regions (ROI total) significantly outperforms models based on single brain regions. This comprehensive approach more accurately identifies MCI patients at high risk of progressing to AD, offering valuable insights for non-invasive diagnostics and facilitating early and timely interventions in clinical settings.

Funder

National Natural Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3