Effect of transgenic cotton continuous cropping on soil bacterial community

Author:

Tian Wen-hui,Yi Xiao-long,Liu Shan-shan,Zhou Chao,Wang Ai-ying

Abstract

Abstract Purpose In agricultural practices, continuous cultivation of genetically modified crops with high commercial value has a definite impact on soil microbial diversity. Soil microorganisms directly define the operational degree and function realization of the soil ecosystem. To understand the safety of environmental release, we studied the effects of continuous cropping of transgenic cotton on the diversity of bacterial communities in the rhizosphere soil. Methods We have applied a high-throughput sequencing method and compared the bacterial community structure as well as diversity of rhizosphere soil of the transgenic cotton line (25C-1) and its parent cotton line (TH2). Result Structural analysis of the bacterial community showed that Arthrobacter and Sphingomonas are significantly enriched after continuous cropping of transgenic cotton lines and had a positive impact on the soil’s ecological environment. Interestingly, parameters of the physical and chemical properties of soil used for the continuous cropping of the two cotton lines for 3 consecutive years show no detectable change, other than total nitrogen. Notably, Spearman’s correlation analysis suggests that total nitrogen is the key environmental factor that affects the bacterial community of the soil used to cultivate the transgenic cotton. Conclusion We did not find a notable difference in species diversity between the two samples. However, the proportions of beneficial bacteria (Arthrobacter and Sphingomonas) increased and the total nitrogen content has changed in 3 years. These results provide necessary insights into the function and role of bacteria in transgenic cotton. This study will help future investigators assess the potential ecological risks of genetically modified plants.

Funder

National Major Science and Technology Projects of China

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3