Study on the soil microbial community structure of the Rhizosphere of Camellia sinensis L. in Anping Village, Kaiyang County, Guizhou Province

Author:

Guo Jinmei,Li JianfengORCID,Zhang Shuqing,Chen Ping

Abstract

Abstract Background To determine the differences in the microbial communities in the Camellia sinensis L. hairy root, lateral root, and main root rhizospheres in Anping Village, Kaiyang County, Guizhou Province, the community structure, diversity, and main dominant species of bacteria and fungi in different parts of the soil were analyzed by ITS and 16S sequencing. Results In the rhizosphere soil of the main root, lateral root, and hairy root of Camellia sinensis L., there were significant differences in the diversity and richness of the bacterial and fungal communities. The bacterial diversity was the highest and the fungal richness was the lowest in the rhizosphere soil of the main root. In the bacterial community, Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Gemmatimonadetes were the common dominant bacteria. Rhodospirillaceae, Bradyrhizobiaceae, Hyphomicrobiaceae, Solibacteraceae, and Koribacteraceae were the common dominant bacteria in the rhizosphere soil of different parts of the root system, but the relative abundance of bacteria in different parts of the rhizosphere soil varied greatly. The dominant groups of fungal communities in different parts of the rhizosphere soil were Basidiomycota, Ascomycota, Mortierellomycota, and Sebacinaceae. The structure of the fungal community is similar in different parts. Conclusions Compared with the different parts of the hairy root, lateral root, and main root of rhizosphere soil of Camellia sinensis L. in Anping village, it was found that the abundance of fungal community decreased with the increase of bacterial community abundance, and there were significant differences in bacterial community diversity and structure. However, the fungal community maintained stability among different parts.

Funder

Key Projects of Guizhou Sci-Tech Plan

Guizhou Sci-Tech Support Plan

Guizhou Outstanding Young Scientific and Technological Talents Program

Sci-Tech Award and Subsidy Project of Guizhou Province

Qinghai Provincial Key Laboratory of Qinghai‐Tibet Plateau Biological Resources

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3