Abstract
Abstract
Introduction
The decline in fishery resources from the wild has led to an ever increasing focus on aquaculture in recent years. With increasing aquaculture of animal species, there is an increasing need for suitable microalgae in the production of these animals. However, cultivation of microalgae in expensive pure chemical media is one of the major challenges facing large-scale cultivation of microalgae.
Purpose
The present study investigated the suitability of aquaculture wastewater (AWW) supplemented with NPK (nitrogen:phosphorus:potassium) fertilizer as a cheap source of nutrient to cultivate a microalga Chlorella vulgaris (C. vulgaris).
Methods
C. vulgaris with an initial cell density of 0.8 × 106 cells/mL was batch cultured in AWW supplemented with NPK at 0.1, 0.5, 1.0 g/L and BBM for 20 days under laboratory conditions using 2000 mL Erlenmeyer flasks. The proximate composition, chlorophyll, minerals, and vitamins analysis of C. vulgaris biomass were done using standard analytical methods.
Results
The highest values in optical density (4.872 ± 0.025), dry cell weight (2.858 ± 0.015 g/L), specific growth rate (0.2097 ± 0.0038 day–1), and biomass productivity (0.1701 ± 0.0007 g/L/day) were obtained in C. vulgaris grown in AWW + 1.0 NPK medium. The total chlorophyll, protein, lipid, and carbohydrate content of the microalgae biomass were in the range of 0.05–0.862%, 44.062–57.089%, 17.064–23.260%, and 15.217–21.896%, respectively. Furthermore, microalgae grown in AWW + 1.0 NPK showed good vitamin and mineral content compared to BBM grown alga.
Conclusion
These findings indicated that the AWW + 0.1 NPK, AWW + 0.5 NPK, and AWW + 1.0 NPK are potential growth media for C. vulgaris cultivation and can replace the BBM medium, which is very expensive and less accessible to users.
Funder
Swedish International Cooperation Agency
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology
Reference72 articles.
1. Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66
2. Ahmad MT, Shariff M, Yusoff F, Goh YM, Banerjee S (2020) Applications of microalga Chlorella vulgaris in aquaculture. Rev Aquac 12:328–346
3. Ahmed N, Thompson S, Glaser M (2019) Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ Manage 63:159–172
4. Allen S (1989) Analysis of vegetation and other organic materials. Chemical analysis of ecological materials. Blackwell. Scientific Publications, Oxford London Edinburgh, Boston Melbourne, pp 46–60
5. Ammar SH (2016) Cultivation of microalgae for biomass production. Al-Khwarizmi Eng J 12:90–99
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献