Antifungal activity, identification and biosynthetic potential analysis of fungi against Rhizoctonia cerealis

Author:

Zhao Xingli,Song Peng,Hou Dianyun,Li Ziliang,Hu ZhenjieORCID

Abstract

Abstract Purpose Wheat sheath blight mainly infected by Rhizoctonia cerealis is one of the soil-borne fungal diseases of wheat worldwide and prevalent in major wheat growing areas in China at present. This study aimed to evaluate the antifungal activity of 163 endophytic fungi on R. cerealis. Antifungal strains were identified and their biosynthetic potential was analysed. Methods The antifungal activity of the strains was evaluated via dual-culture antagonism assay. The antifungal strains were identified on the basis of morphological characteristics and internal transcribed spacer gene sequencing. The polyketide synthases (PKSs) and nonribosomal peptide synthetase (NRPS) genes in antifungal strains were detected via specific amplification of chromosomal DNA. Result Twelve out of 163 fungal strains, including seven strains with matrix competition and five strains with antibiosis, were obtained. The twelve antifungal strains belonged to four genera: Alternaria, Ascochyta, Botryosphaeria, and Talaromyces. The inhibition rate of the seven strains with matrix competition was greater than 50%, with that of Botryosphaeria dothidea S2-33 being the highest at 84.6%. The inhibition zone of Talaromyces assiutensis R-03 amongst the five strains with antibiosis was the widest at up to 7 mm. Among the twelve antifungal strains, the strain S2-16 contained all the genes tested, five B. dothidea strains contained PKS-II and NRPS genes, two Alternaria alternata strains only contained PKS-II gene and the remaining four strains did not contain any. Conclusion Results demonstrated twelve potential strains for the biocontrol of wheat sheath blight. In particular, T. assiutensis R-03 was determined as a promising agent. The active substances secreted by antifungal strains may be produced by other biosynthetic pathways.

Funder

Key Scientific Research Project of Colleges and Universities in Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3