Plant growth-promoting endophytic fungi of the wild halophytic rice Oryza coarctata

Author:

Airin Arifa Akhter,Arafat Md Iyasir,Begum Rifat Ara,Islam Md Rakibul,Seraj Zeba Islam

Abstract

Abstract Background Plant growth-promoting endophytic fungi (PGPEF) that are associated with halophytes have the potential to boost crop salinity tolerance and productivity. This in turn has the potential of enabling and improving cultivation practices in coastal lands affected by salt stress. Methods Endophytic fungi from the wild halophytic rice Oryza coarctata were isolated, characterized, identified, and studied for their effects on all developing stages of rice plant growth and their yields both with and without salt stress. Key results In this study, three different fungal endophytes were isolated from the halophytic wild rice Oryza coarctata. Two isolates were identified as Talaromyces adpressus (OPCRE2) and Talaromyces argentinensis (OPCRh1) by ITS region sequencing. The remaining isolate NPCRE2 was confirmed as a novel strain named Aspergillus welwitschiae Ocstreb1 (AwOcstreb1) by whole genome sequencing. These endophytes showed various plant growth-promoting (PGP) abilities in vitro (e.g., IAA, ACC-deaminase and siderophore production, phosphate, and zinc solubilization as well as nitrogen fixation), where AwOcstreb1 was significantly more efficient compared to the other two isolates at high salinity (900 mm). Independent application of these fungi in commercial rice (Oryza sativa) showed significant elevation in plant growth, especially in the case of the AwOcstreb1 inoculants, which had enhanced metabolite and chlorophyll content at the seedling stage in both no-salt control and 100-mm salt-stressed plants. At the same time, AwOcstreb1-treated plants had a significantly lower level of H2O2, electrolyte leakage, and Na+/K+ ratio under saline conditions. Higher expression (1.6 folds) of the SOS1 (salt overly sensitive 1) gene was also observed in these plants under salinity stress. This strain also improved percent fertility, tillering, panicle number, and filled grain number in both no-salt control and 45-mm salt-stressed inoculated plants at the reproductive stage. Consequently, the differences in their yield was 125.16% and 203.96% (p < 0.05) in colonized plants in normal and saline conditions, respectively, compared to uninoculated controls. Conclusions We propose that AwOcstreb1 is a potential candidate for an eco-friendly biofertilizer formula to improve the cultivation and yield of rice or any other crop in the highly saline coastal regions of Bangladesh.

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3