The function of uridine diphosphate glucose pyrophosphorylase in the lyophilization-stress response of Lactobacillus acidophilus

Author:

Xia Chaoran,Zeng Xiaoqun,Peng Liuyang,Pan Daodong,Wu Zhen,Guo Yuxing,Cai Zhendong

Abstract

Abstract Purpose Uridine diphosphate glucose pyrophosphorylase (UGPase) plays an important role in glucose metabolism, catalyzing the reversible formation and decomposition of UDP-glucose (UDPG). In previous work, we found that UGPase is a key enzyme in lyophilization response for Lactobacillus acidophilus (L. acidophilus). However, its function and regulatory mechanism in the freeze-drying stress response are unknown. Herein, the effect of UGPase on freeze-drying survival rate of Staphylococcus carnosus (S. carnosus) was studied. Methods In this work, the genes LBA1719 encoding UGPase of L. acidophilus ATCC4356 were inserted into plasmid pMG-36e to construct the recombinant plasmid pMG-LBA1719 and then overexpressed in S. carnosus; the control group was S. carnosus transformed by pMG-36e. The lyophilization-survival rate of overexpressed S. carnosus was determined, and the differentially expressed genes (DEGs) were analyzed by transcriptome to disclose the mechanism of LBA1719 in regulating the lyophilization-survival rate. Results Compared with the control group, the UGPase activities of the overexpressed S. carnosus increased by 35.49%, while the lyophilization-survival rates decreased by 11.17% (p < 0.05). Overexpression of LBA1719 decreased the expression of genes gapA, gapB, and pgiA in carbohydrate metabolism and dapA, dapB, and dapE in amino acid metabolism, significantly changing the physiological characteristics of S. carnosus and decreasing its lyophilization-survival rate. Conclusion In summary, overexpression of UGPase accelerated the growth rate of S. carnosus and reduced its lyophilization-survival rates. GapA, gapB, pgiA, dapA, dapB, and dapE are vital to lyophilization protection in lactic acid bacteria (LAB). These findings provide new theoretical basis for analyzing the regulatory and molecular mechanisms of lyophilization resistance in LABs.

Funder

National Natural Science Foundation of China

Science and Technology Department of Zhejiang Province

Ningbo Municipal Bureau of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3