Overflow metabolism provides a selective advantage to Escherichia coli in mixed cultures

Author:

Yasir Muhammad,Thomson Nicholas M.,Turner A. Keith,Webber Mark A.ORCID,Charles Ian G.

Abstract

Abstract Purpose It has previously been shown that organic acids produced by Escherichia coli suppress the growth of Pseudomonas aeruginosa in co-cultures under conditions of glucose excess, due to overflow metabolism. Inactivation of genes involved in central carbon metabolism favours fermentation of glucose over respiration and therefore increases production of organic acid by-products such as acetate and lactate. We sought to extend and refine the list of genes known to contribute to the metabolic balance between respiration and fermentation, to better understand the role of overflow metabolism in competitive survival of E. coli. Methods We confirmed the previous finding that E. coli excludes P. aeruginosa from co-cultures by producing organic acids in the presence of glucose. Using a genome-wide transposon screen we identified E. coli genes that are important for survival in co-cultures with P. aeruginosa, both with and without glucose supplementation. Results Central carbon metabolism was the dominant gene function under selection in our experimental conditions, indicating that the observed inhibition is a side-effect of overflow metabolism adopted by E. coli as a response to high glucose concentrations. The presence of a competing species increased the selective pressure for central carbon metabolism genes, with 31 important for growth in the presence of P. aeruginosa and glucose, while only 9 were significant for pure E. coli cultures grown with glucose. In our experiments, each transposon mutant was competed against all others in the pool, suggesting that overflow metabolism provides benefits to individual E. coli cells in addition to competitive inhibition derived from acidification of the growth medium. Conclusion Co-culture assays using transposon mutant libraries can provide insight into the selective pressures present in mixed species competition. This work demonstrates central carbon metabolism is the dominant gene function under selection in E. coli for aerobic growth in glucose and a side-effect of this is overflow metabolism which can inhibit growth of bystander species.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3