Draft genome sequences of two Streptomyces albidoflavus strains DEF1AK and DEF147AK with plant growth-promoting and biocontrol potential

Author:

Kunova AndreaORCID,Cortesi Paolo,Saracchi Marco,Migdal Guy,Pasquali Matias

Abstract

Abstract Purpose Bacteria belonging to the Streptomyces genus can be exploited in environmentally friendly approaches to food safety. Genome information can help to characterize bioactive strains opening the possibility to decipher their mechanisms of action. Methods The biocontrol and plant growth-promoting activity of two Streptomyces spp. strains, DEF1AK and DEF147AK, were assessed in vitro and in planta. The genome sequences were determined using the Illumina NextSeq sequencing system and were assembled using EvoCAT (Evogene Clustering and Assembly Toolbox). Result Streptomyces spp. DEF1AK and DEF147AK were able to improve seed germination and early plant development of maize, wheat, and tomato and inhibited the mycelium growth of diverse fungal plant pathogens in vitro. The genome sequence analysis identified both strains as S. albidoflavus (99% sequence identity). Both genomes were of 7.1-Mb length with an average GC content of 73.45%. AntiSMASH and MIBiG analyses revealed strain-specific sets of secondary metabolite gene clusters in the two strains as well as differences in the number and type of duplicated genes. Conclusion The combination of the biological activity and genomic data is the basis for in-depth studies aimed at the identification of secondary metabolites involved in plant growth-promoting and biocontrol activity of Streptomyces spp. The comparison of unique genomic features of the two strains will help to explain their diverse biocontrol and plant growth-promoting activities and warrant targeted functional genomics approaches to verify their mechanisms of action.

Funder

University of Milan

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3