Bacterial and archaeal communities within the alkaline soda Langaco Lake in the Qinghai-Tibet Plateau

Author:

Wang Mingxiang,Zhang Xin,Shu Zhiwan,Wang Zhibo,Tao Yujie,Lv Chuanbo,Zhu Derui,Shen GuopingORCID

Abstract

Abstract Purpose Langaco Lake (LGL) is a soda lake located at an altitude of 4548 m in the Qinghai-Tibet Plateau in China. LGL exhibits unique hydrochemical characteristics among soda lakes, but little is known about the microbial diversity of LGL and the microbial interactions with environmental factors. Methods The water samples were filtered using chemical-grade cellulose acetate membrane (pore size of 0.45 μm), and the hydrochemical characteristics were analyzed. Community DNA was extracted, and then high-throughput sequencing of 16S rRNA genes was conducted to evaluate the composition of the microbial community. Results The high-throughput sequencing of 16S rRNA genes revealed that the bacterial diversity in LGL consisted of 327 genera in 24 phyla (4871 operational taxonomic units (OTUs); Shannon index values of 5.20–6.07), with a significantly higher diversity than that of the Archaea (eight phyla and 29 genera comprising 1008 OTUs; Shannon index values of 2.98–3.30). The bacterial communities were dominated by Proteobacteria (relative abundances of 42.79–53.70%), followed by Bacteroidetes (11.13–15.18%), Planctomycetes (4.20–12.82%), Acidobacteria (5.91–9.50%), Actinobacteria (2.60–5.80%), and Verrucomicrobia (2.11–4.08%). Furthermore, the archaeal communities were dominated by Crenarchaeota (35.97–58.29%), Euryarchaeota (33.02–39.89%), and Woesearchaeota (6.50–21.57%). The dominant bacterial genus was Thiobacillus (8.92–16.78%), and its abundances were most strongly correlated with the total phosphorus (TP) content, pH value, CO32− concentration, and temperature. The most abundant archaeal genus was Methanoregula (21.40–28.29%), and its abundances were the most highly correlated with the total organic carbon (TOC) content, total salinity (TS), and K+ and Na+ concentrations. Conclusions The results of this study provide valuable insights for developing a more comprehensive understanding of microbial diversity in these unique carbonate alkaline environments, as well as a better understanding of the microbial resources on the Qinghai-Tibet Plateau.

Funder

National Natural Science Foundation of China

Applied Basic Research program of qinghai Province

team's research program of microbial resources in salt-lakes of qinghai-tibetan plateau

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3