Isolation and characterization of coliphages from different water sources and their biocontrol application combined with electron beam irradiation for elimination of E. coli in domestic wastewater

Author:

Fathy RehamORCID,Eid Amal S.,Hammad Ali A.,El-Nour Salwa A. Abou

Abstract

Abstract Background Antibiotic-resistant bacteria, including Escherichia coli (E. coli), are high-risk waterborne pathogens that pose a vital threat to the general public’s health. Therefore, this study aims to develop alternative and affordable treatment approaches. Coliphage treatment is an economically and environmentally sustainable method for eliminating pathogenic bacteria. A significant step toward improving germicidal effectiveness might be to combine coliphage with electron beam treatment. Results Twelve isolated E. coli were used as host bacteria. In addition, eleven coliphages were isolated and characterized to determine their suitable host range and lytic activities. Antibiotic resistance was tested to detect the most antimicrobial-resistant E. coli isolates. Results indicated that E. coli-2 and E. coli-10 were the most resistant bacterial isolates. Both somatic coliphage-3 (S3) and F-specific coliphage-3 (F3) were the most active lytic coliphages. Based on transmission electron microscope analysis, S3 was classified as a member of the Myoviridae family, while F3 belonged to the Leviviridae family. Genome types were detected; the S3 genome was a linear double-stranded DNA virus, while the F3 genome was a single-strand RNA virus. The adjustment of pH to 7 and temperature to 38 °C increased coliphage activity by 32.2% for S3 and 14% for F3. The optimum multiplicity of infection (MOI) for S3 was 1:1 and 2:1 for F3. From the one-step growth curve, both the latent periods of S3 and F3 were estimated to be 30 and 20 min, and the burst sizes showed 5.8 and 4.6 (PFU)/infected cells, respectively. The D10 values of the most two antimicrobial-resistant strains (E. coli-2 and E. coli-10) were calculated, showing nearly identical values (0.37 and 0.38 kGy), respectively. Both coliphages were used, either alone or in combination with electron beam irradiation (EBI), to eradicate the most multidrug-resistant E. coli in domestic wastewater. EBI reduced the counts of E. coli-2 and -10 by 59% and 65%, respectively. While the combination of coliphages and EBI completely eradicated these microbes. Conclusions Combination of each individual coliphage and EBI decreased the growth of E. coli in domestic wastewater to an undetectable level. Graphical Abstract

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3