High-throughput sequencing analysis reveals genomic similarity in phenotypic heterogeneous Photorhabdus luminescens cell populations

Author:

Dominelli Nazzareno,Jäger Heidi Yoko,Langer Angela,Brachmann Andreas,Heermann RalfORCID

Abstract

Abstract Purpose Phenotypic heterogeneity occurs in many bacterial populations: single cells of the same species display different phenotypes, despite being genetically identical. The Gram-negative entomopathogenic bacterium Photorhabdus luminescens is an excellent example to investigate bacterial phenotypic heterogeneity. Its dualistic life cycle includes a symbiotic stage interacting with entomopathogenic nematodes (EPNs) and a pathogenic stage killing insect larvae. P. luminescens appears in two phenotypically different cell forms: the primary (1°) and the secondary (2°) cell variants. While 1° cells are bioluminescent, pigmented, and produce a huge set of secondary metabolites, 2° cells lack all these phenotypes. The main difference between both phenotypic variants is that only 1° cells can undergo symbiosis with EPNs, a phenotype that is absent from 2° cells. Recent comparative transcriptome analysis revealed that genes mediating 1° cell-specific traits are modulated differently in 2° cells. Although it was previously suggested that heterogeneity in P. luminescens cells cultures is not genetically mediated by, e.g., larger rearrangements in the genome, the genetic similarity of both cell variants has not clearly been demonstrated yet. Methods Here, we analyzed the genomes of both 1° and 2° cells by genome sequencing of each six single 1° and 2° clones that emerged from a single 1° clone after prolonged growth. Using different bioinformatics tools, the sequence data were analyzed for clustered point mutations or genetic rearrangements with respect to the respective phenotypic variant. Result We demonstrate that isolated clones of 2° cells that switched from the 1° cell state do not display any noticeable mutation and do not genetically differ from 1° cells. Conclusion In summary, we show that the phenotypic differences in P. luminescens cell cultures are obviously not caused by mutations or genetic rearrangements in the genome but truly emerge from phenotypic heterogeneity.

Funder

Deutsche Forschungsgemeinschaft

Gutenberg Nachwuchskolleg

Johannes Gutenberg-Universität Mainz

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3