The complex microbiome in aquaponics: significance of the bacterial ecosystem

Author:

Kasozi Nasser,Abraham Benjamin,Kaiser Horst,Wilhelmi BrendanORCID

Abstract

Abstract Purpose Aquaponics is a technology that has minimal impact on the environment and which is often promoted as a solution for sustainable food production. Developing aquaponics sustainably requires a thorough understanding of the biological components of the system. Recent reports on the bacterial populations of aquaponics systems using new DNA sequencing technologies are revealing a complex and diverse microbial ecosystem. The purpose of this review is to present information on microbial composition and various factors affecting bacterial activity in aquaponics systems. Approaches for establishing a bacterial ecosystem during the setup of an aquaponics system, and microbiological safety of aquaponics products are also highlighted. Methods This review was developed by evaluating and synthesising current literature of peer-reviewed publications related to aquaponics and microbial communities. Based on the results from credible academic journals, publications were categorised into five groups: methods used to characterise microbiomes, biofiltration microorganisms, bacterial diversity, biofilter establishment, and safety of aquaponics products. Results The microbial ecosystem is essential for biological filtration of water through the mineralisation of nutrients required for plant growth in an integrated system. The aquaponics microbiome is complex, and bacterial composition varies between the different compartments of these systems. Establishing these bacterial ecosystems is essential for optimal functioning of aquaponics. At the phylum level, Proteobacteria and Bacteroidetes are dominant in aquaponics systems. Despite bacteria being fundamental to aquaponics, there are currently no reports of human pathogens in aquaponics products. Conclusion Knowledge of the composition of bacterial populations in aquaponics systems will enhance understanding of relationships and functions within the microbiome. This in turn will allow for the establishment of sustainable and healthy aquaponics systems for food production.

Funder

DAAD

Rhodes University

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3