Autonomous vehicle impact on improving road network vulnerability

Author:

Obaid MohammedORCID,Török Árpád

Abstract

Abstract Purpose This study first presents a method to identify the parameters increasing road vulnerability on a macroscopic road network model. The second part exploresthe effect size difference of the analyzed attributes on network vulnerability through the implementation of different autonomous vehicles (AVs) penetrations and automation levels. Methods The road traffic network of Budapest, Hungary on PTV VISUM is studied by adopting a passenger car unit factor procedure to simulate the effect of AVs on road saturation. Five link parameters were used: length, distance from the centre, speed, number of lanes, and number of connectors. Network vulnerability was studied by simulating a combination of road elimination process with different passenger car unit values for AVs. Results The analysis found the number of road lanes is the most significant parameter, affecting the link criticality; followed by road length and distance from the centre. The analysis of four AV scenarios with different AV penetration and level of automation showed huge effect differences ranging from 3.50% for a simple AV automation level with low AV percentage to as large to 28.53% for a fully automated fleet. Conclusions AV implementation has proved efficient in reducing the amount of travel delays in the case of road failure. Finally, it was found that the number of lanes remained the most significant influencing parameter on travel delay. The main question is to discover the effect size difference of the analyzed attributes on network vulnerability through the implementation of different AVs penetrations and automation levels.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Transportation,Automotive Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3