Abstract
Abstract Adverse weather conditions can have different effects on different types of road crashes. We quantify the combined effects of traffic volume and meteorological parameters on hourly probabilities of 78 different crash types using generalized additive models. Using tensor product bases, we model non-linear relationships and combined effects of different meteorological parameters. We evaluate the increase in relative risk of different crash types in case of precipitation, sun glare and high wind speeds. The largest effect of snow is found in case of single-truck crashes, while rain has a larger effect on single-car crashes. Sun glare increases the probability of multi-car crashes, in particular at higher speed limits and in case of rear-end crashes. High wind speeds increase the probability of single-truck crashes and, for all vehicle types, the risk of crashes with objects blown on the road. A comparison of the predictive power of models with and without meteorological variables shows an improvement of scores of up to 24%, which makes the models suitable for applications in real-time traffic management or impact-based warning systems. These could be used by authorities to issue weather-dependent driving restrictions or situation-specific on-board warnings to improve road safety.
Funder
Bundesministerium für Verkehr und Digitale Infrastruktur
Freie Universität Berlin
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Transportation,Automotive Engineering
Reference28 articles.
1. Peden, M., & Sminkey, L. (2004). World health organization dedicates world health day to road safety. Injury Prevention, 10(2), 67–67. https://doi.org/10.1136/ip.2004.005405.
2. BASt: Verkehrs- und unfalldaten - kurzzusammenstellung der entwicklung in deutschland. Technical report, Bundesanstalt für Straßenwesen, Bergisch Gladbach, Germany (2020). https://www.bast.de/DE/Publikationen/Medien/VU-Daten/VU-Daten.pdf. Accessed 7 Jan 2022.
3. Theofilatos, A., & Yannis, G. (2014). A review of the effect of traffic and weather characteristics on road safety. Accident Analysis and Prevention, 72, 244–256. https://doi.org/10.1016/j.aap.2014.06.017.
4. Ziakopoulos, A., & Yannis, G. (2020). A review of spatial approaches in road safety. Accident Analysis and Prevention, 135, 105323. https://doi.org/10.1016/j.aap.2019.105323.
5. Becker, N., Rust, H. W., & Ulbrich, U. (2020). Predictive modeling of hourly probabilities for weather-related road accidents. Natural Hazards and Earth System Sciences, 20(10), 2857–2871. https://doi.org/10.5194/nhess-20-2857-2020.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献