Comparing discrete choice and machine learning models in predicting destination choice

Author:

Rahnasto IlonaORCID,Hollestelle Martijn

Abstract

AbstractDestination choice modeling has long been dominated by theory-based discrete choice models. Simultaneously, machine learning has demonstrated improved predictive performance to other fields of discrete choice modeling. The objective of this research was to compare machine learning models and a multinomial logit model in predicting destination choice. The models were assessed on their predictive performance using metrics for both binary classification and probabilistic classification. The results indicate that machine learning models, especially a random forest model, could bring improvements in prediction accuracy. The more data was used in training the models, the better the machine learning models tended to perform compared to the multinomial logit model. With less data, the multinomial logit model performed comparatively well. The findings are relevant for the field of destination choice modeling, where evidence on the use of machine learning models is very limited. In addition, the unbalanced choice sets of destination choice models with multiple non-chosen alternatives increases the need for further research in model fit and parameter tuning.

Funder

European Conference of Transport Research Institutes

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3