Real-time data assimilation and control on mechanical systems under uncertainties

Author:

Rubio Paul-Baptiste,Chamoin LudovicORCID,Louf FrançoisORCID

Abstract

AbstractThis research work deals with the implementation of so-called Dynamic Data-Driven Application Systems (DDDAS) in structural mechanics activities. It aims at designing a real-time numerical feedback loop between a physical system of interest and its numerical simulator, so that (i) the simulation model is dynamically updated from sequential and in situ observations on the system; (ii) the system is appropriately driven and controlled in service using predictions given by the simulator. In order to build such a feedback loop and take various uncertainties into account, a suitable stochastic framework is considered for both data assimilation and control, with the propagation of these uncertainties from model updating up to command synthesis by using a specific and attractive sampling technique. Furthermore, reduced order modeling based on the Proper Generalized Decomposition (PGD) technique is used all along the process in order to reach the real-time constraint. This permits fast multi-query evaluations and predictions, by means of the parametrized physics-based model, in the online phase of the feedback loop. The control of a fusion welding process under various scenarios is considered to illustrate the proposed methodology and to assess the performance of the associated numerical architecture.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discrete-time formulations as time discretization strategies in data assimilation;Handbook of Numerical Analysis;2023

2. Machine Learning in Computer Aided Engineering;Computational Methods in Engineering & the Sciences;2023

3. An introduction to model order reduction techniques;Reduced Order Models for the Biomechanics of Living Organs;2023

4. Real-time inverse crack tracking in uncertain microstructures using PGD-based model reduction and extended Kalman filtering;Computational Mechanics;2022-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3