Mesh-adapted stress analysis of multilayered plates using a layerwise model

Author:

Salha Lucille,Bleyer JérémyORCID,Sab Karam,Bodgi Joanna

Abstract

AbstractThis paper proposes a new finite-element modelling of a recent layerwise model for multilayered plates. This layerwise model is built from a specific 3D stress-field expansion along the thickness direction and involves, in particular, interlaminar transverse shear and out-of-plane stresses as generalized stresses. Its main feature is that 3D equilibrium equations and free-edge boundary conditions are directly taken into account into the stress-based construction of the model. A dual displacement-based finite-element discretization is implemented using the FEniCS software package and a remeshing strategy is proposed based on a novel error indicator. The error indicator is built based on the 3D stress field directly deduced from the layerwise generalized stresses and compared to a reconstructed stress field based on the model generalized displacements. The proposed error indicator is shown to identify the most critical parts of a laminate structure associated with complex 3D stress fields such as boundaries or stress concentration/singularity regions (near free-edges or delamination fronts). Through the combination of thickness discretization and in-plane mesh refinement in regions of interest, the proposed framework therefore offers an attractive alternative to 3D solid finite elements for an accurate prediction of stress states in composite laminates.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modelling and Simulation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3