Symmetry analysis and equivalence transformations for the construction and reduction of constitutive models

Author:

Ganghoffer J. F.,Rahouadj R.,Cheviakov A.

Abstract

AbstractA methodology based on Lie analysis is proposed to investigate the mechanical behavior of materials exhibiting experimental master curves. It is based on the idea that the mechanical response of materials is associated with hidden symmetries reflected in the form of the energy functional and the dissipation potential leading to constitutive laws written in the framework of the thermodynamics of irreversible processes. In constitutive modeling, symmetry analysis lets one formulate the response of a material in terms of so-called master curves, and construct rheological models based on a limited number of measurements. The application of symmetry methods leads to model reduction in a double sense: in treating large amounts number of measurements data to reduce them in a form exploitable for the construction of constitutive models, and by exploiting equivalence transformations extending point symmetries to efficiently reduce the number of significant parameters, and thus the computational cost of solving boundary value problems (BVPs). The symmetry framework and related conservation law analysis provide invariance properties of the constitutive models, allowing to predict the influence of a variation of the model parameters on the material response or on the solution of BVPs posed over spatial domains. The first part of the paper is devoted to the presentation of the general methodology proposed in this contribution. Examples of construction of rheological models based on experimental data are given for setting up a reduced model of the uniaxial creep and rupture behaviour of a Chrome-Molybdenum alloy (9Cr1Mo) at different temperatures and stress levels. Constitutive equations for creep and rupture master responses are identified for this alloy, and validated based on experimental data. Equivalence transformations are exemplified in the context of parameter reduction in fully nonlinear anisotropic fiber-reinforced elastic solids.

Funder

nserc

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modelling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weight balancing device parameters optimization for cargo-handling crane jib at the Northern port conditions;VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3