Abstract
AbstractAlthough projection-based reduced-order models (ROMs) for parameterized nonlinear dynamical systems have demonstrated exciting results across a range of applications, their broad adoption has been limited by their intrusivity: implementing such a reduced-order model typically requires significant modifications to the underlying simulation code. To address this, we propose a method that enables traditionally intrusive reduced-order models to be accurately approximated in a non-intrusive manner. Specifically, the approach approximates the low-dimensional operators associated with projection-based reduced-order models (ROMs) using modern machine-learning regression techniques. The only requirement of the simulation code is the ability to export the velocity given the state and parameters; this functionality is used to train the approximated low-dimensional operators. In addition to enabling nonintrusivity, we demonstrate that the approach also leads to very low computational complexity, achieving up to $$10^3{\times }$$
10
3
×
in run time. We demonstrate the effectiveness of the proposed technique on two types of PDEs. The domain of applications include both parabolic and hyperbolic PDEs, regardless of the dimension of full-order models (FOMs).
Funder
Advanced Scientific Computing Research
Sandia National Laboratories
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modeling and Simulation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献