Author:
Kerfriden P.,Claus S.,Mihai I.
Abstract
AbstractWe develop a novel unfitted finite element solver for composite materials with quasi-1D fibrous reinforcements. The method belongs to the class of mixed-dimensional non-conforming finite element solvers. The fibres are treated as 1D structural elements that may intersect the mesh of the embedding structure in an arbitrary manner. No meshing of the unidimensional elements is required. Instead, fibre solution fields are described using the trace of the background mesh. A regularised “cut” finite element formulation is carefully designed to ensure that analyses using such non-conforming finite element descriptions are stable. We also design a dedicated primal/dual operator splitting scheme to resolve the coupling between structure and fibrous reinforcements efficiently. The novel computational strategy is applied to the solution of stiff computational models whereby fibrous reinforcements may lose their bond to the embedding material above a certain level of stress. It is shown that the primal-dual 1D/3D CutFEM scheme is convergent and well-behaved in variety of scenarios involving such highly nonlinear structural computations.
Funder
Ser Cymru National Research Network in Advanced Engineering and Materials under grants
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modelling and Simulation
Reference28 articles.
1. Akula BR, Vignollet J, Yastrebov VA. MorteX method for contact along real and embedded surfaces: coupling X-FEM with the Mortar method. 2019. arXiv preprint
arXiv:1902.04000.
2. Alart P, Curnier A. A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput Methods Appl Mech Eng. 1991;92(3):353–75.
3. Allix O, Kerfriden P, Gosselet P. On the control of the load increments for a proper description of multiple delamination in a domain decomposition framework. Int J Numer Methods Eng. 2010;83:1518–40.
4. Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN. The FEniCS project version 1.5. Arch Numer Softw. 2015;3(100):9–23.
5. Bui HP, Tomar S, Bordas SPA. Corotational cut finite element method for real-time surgical simulation: application to needle insertion simulation. Comput Methods Appl Mech Eng. 2019;345:183–211.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献