Regularized regressions for parametric models based on separated representations

Author:

Sancarlos Abel,Champaney Victor,Cueto EliasORCID,Chinesta Francisco

Abstract

AbstractRegressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding multi-parametric solutions can be viewed as a sort of computational vademecum that, once computed offline, can be then used in a variety of real-time engineering applications including optimization, inverse analysis, uncertainty propagation or simulation based control. Sometimes, these multi-parametric problems can be solved by using advanced model order reduction—MOR-techniques. However, solving these multi-parametric problems can be very costly. In that case, one possibility consists in solving the problem for a sample of the parametric values and creating a regression from all the computed solutions. The solution for any choice of the parameters is then inferred from the prediction of the regression model. However, addressing high-dimensionality at the low data limit, ensuring accuracy and avoiding overfitting constitutes a difficult challenge. The present paper aims at proposing and discussing different advanced regressions based on the proper generalized decomposition (PGD) enabling the just referred features. In particular, new PGD strategies are developed adding different regularizations to the s-PGD method. In addition, the ANOVA-based PGD is proposed to ally them.

Funder

Ministerio de Ciencia, Innovación y Universidades

Departamento de Educación, Cultura y Deporte, Gobierno de Aragón

ESI Group

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modeling and Simulation

Reference37 articles.

1. Ammar A, Mokdad B, Chinesta F, KEUNINGS R. A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations. J Non-Newtonian Fluid Mech. 2007;144(2–3):98–121.

2. Argerich C. Study and development of new acoustic technologies for nacelle products. PhD thesis, Universitat Politecnica de Catalunya; 2020.

3. Beddek K. Propagation d’incertitudes dans les modèles éléments finis en électromagnétisme : application au contrôle non destructif par courants de Foucault. PhD thesis, Ecole doctorale Sciences pour l’Ingenieur (Lille) - L2EP, 2012. Thèse de doctorat dirigée par Clénet, StéphaneLe Menach, Yvonnick et Moreau, Olivier Génie électrique. 2012.

4. Borzacchiello D, Aguado JV, Chinesta F. Non-intrusive sparse subspace learning for parametrized problems. Arch Comput Methods Eng. 2019;26(2):303–26.

5. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 2011;3(1):1–122.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3