Application of artificial neural networks for the prediction of interface mechanics: a study on grain boundary constitutive behavior

Author:

Fernández MauricioORCID,Rezaei Shahed,Rezaei Mianroodi Jaber,Fritzen Felix,Reese Stefanie

Abstract

AbstractThe present work aims at the identification of the effective constitutive behavior of $$\Sigma 5$$Σ5 aluminum grain boundaries (GB) for proportional loading by using machine learning (ML) techniques. The input for the ML approach is high accuracy data gathered in challenging molecular dynamics (MD) simulations at the atomic scale for varying temperatures and loading conditions. The effective traction-separation relation is recorded during the MD simulations. The raw MD data then serves for the training of an artificial neural network (ANN) as a surrogate model of the constitutive behavior at the grain boundary. Despite the extremely fluctuating nature of the MD data and its inhomogeneous distribution in the traction-separation space, the ANN surrogate trained on the raw MD data shows a very good agreement in the average behavior without any data-smoothing or pre-processing. Further, it is shown that the trained traction-separation ANN captures important physical properties and is able to predict traction values for given separations not contained in the training data. For example, MD simulations show a transition in traction-separation behaviour from pure sliding mode under shear load to combined GB sliding and decohesion with intermediate hardening regime at mixed load directions. These changes in GB behaviour are fully captured in the ANN predictions. Furthermore, by construction, the ANN surrogate is differentiable for arbitrary separation and also temperature, such that a thermo-mechanical tangent stiffness operator can always be evaluated. The trained ANN can then serve for large-scale FE simulation as an alternative to direct MD-FE coupling which is often infeasible in practical applications.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3