Abstract
AbstractThis paper presents a robust digital pipeline from CT images to the simulation of contact between multiple bodies. The proposed strategy relies on a recently developed immersed finite element algorithm that is capable of simulating unilateral contact between solids without meshing (Claus and Kerfriden in Int J Numer Methods Eng 113(6):938–966, 2018). It was shown that such an approach reduces the difficulties associated with the digital flow of information from analytically defined geometries to mechanical simulations. We now propose to extend our approach to include geometries, which are not defined mathematically but instead are obtained from images, and encoded in 3D arrays of voxels. This paper introduces two novel elements. Firstly, we reformulate our contact algorithm into an extension of an augmented Lagrangian CutFEM algorithm. Secondly, we develop an efficient algorithm to convert the surface data generated by standard segmentation tools used in medical imaging into level-set functions. These two elements give rise to a robust digital pipeline with minimum user intervention. We demonstrate the capabilities of our algorithm on a hip joint geometry with contact between the femur and the hip bone.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modelling and Simulation
Reference33 articles.
1. 3D Slicer. https://www.slicer.org/, 2019.
2. Alnæs Martin, Blechta Jan, Hake Johan, Johansson August, Kehlet Benjamin, Logg Anders, Richardson Chris, Ring Johannes, Rognes Marie E, Wells Garth N. The fenics project version 1.5. Archive of Numerical Software. 2015;3(100):1.
3. Baumgärtner D, Wolf J, Rossi R, Dadvand P, Wüchner R. A robust algorithm for implicit description of immersed geometries within a background mesh. Advanced Modeling and Simulation in Engineering Sciences. 2018;5(1):21.
4. Bui HP, Tomar S, Bordas SPA. Corotational cut finite element method for real-time surgical simulation: Application to needle insertion simulation. Computer methods in applied mechanics and engineering. 2019;345:183–211.
5. Burman E. Ghost penalty. Comptes Rendus Mathematique. 2010;348(21–22):1217–20.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献