Finite element method-enhanced neural network for forward and inverse problems

Author:

Meethal Rishith E.ORCID,Kodakkal AnoopORCID,Khalil Mohamed,Ghantasala Aditya,Obst Birgit,Bletzinger Kai-UweORCID,Wüchner RolandORCID

Abstract

AbstractWe introduce a novel hybrid methodology that combines classical finite element methods (FEM) with neural networks to create a well-performing and generalizable surrogate model for forward and inverse problems. The residual from finite element methods and custom loss functions from neural networks are merged to form the algorithm. The Finite Element Method-enhanced Neural Network hybrid model (FEM-NN hybrid) is data-efficient and physics-conforming. The proposed methodology can be used for surrogate models in real-time simulation, uncertainty quantification, and optimization in the case of forward problems. It can be used to update models for inverse problems. The method is demonstrated with examples and the accuracy of the results and performance is compared to the conventional way of network training and the classical finite element method. An application of the forward-solving algorithm is demonstrated for the uncertainty quantification of wind effects on a high-rise buildings. The inverse algorithm is demonstrated in the speed-dependent bearing coefficient identification of fluid bearings. Hybrid methodology of this kind will serve as a paradigm shift in the simulation methods currently used.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modeling and Simulation

Reference60 articles.

1. Russell S, Norvig P. Artificial intelligence—a modern approach. Prentice Hall series in artificial intelligence. 2nd ed. Prentice Hall; 2003.

2. Szeliski R. Computer vision: algorithms and applications. Berlin: Springer; 2010.

3. Jurafsky D. Speech & language processing. India: Pearson Education India; 2000.

4. Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem. 2001;26(1):5–14.

5. Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318–31.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning adaptive coarse basis functions of FETI-DP;Journal of Computational Physics;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3