Large-scale graph-machine-learning surrogate models for 3D-flowfield prediction in external aerodynamics

Author:

Roznowicz Davide,Stabile GiovanniORCID,Demo Nicola,Fransos Davide,Rozza Gianluigi

Abstract

AbstractThe article presents the application of inductive graph machine learning surrogate models for accurate and efficient prediction of 3D flow for industrial geometries, explicitly focusing here on external aerodynamics for a motorsport case. The final aim is to build a surrogate model that can provide quick predictions, bypassing in this way the unfeasible computational burden of traditional computational fluid dynamics (CFD) simulations. We investigate in this contribution the usage of graph neural networks, given their ability to smoothly deal with unstructured data, which is the typical context for industrial simulations. We integrate an efficient subgraph-sampling approach with our model, specifically tailored for large dataset training. REV-GNN is the chosen graph machine learning model, that stands out for its capacity to extract deeper insights from neighboring graph regions. Additionally, its unique feature lies in its reversible architecture, which allows keeping the memory usage constant while increasing the number of network layers. We tested the methodology by applying it to a parametric Navier–Stokes problem, where the parameters control the surface shape of the industrial artifact at hand, here a motorbike.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3