Abstract
AbstractThe authors have developed a novel physics-based nonlinear autoregressive exogeneous neural network model architecture for flight modelling across the entire flight envelope, calledFlyNet. When using traditional parameter estimation and output-error methods, aircraft models are captured about a single point in the flight envelope using a first-order Taylor series to approximate forces and moments. To enable analysis throughout the entire operational envelope, the traditional models can be extended by interpolating or stitching between a number of these single-condition models. This paper completes the evolutionary next step in aircraft modelling to consider all second-order Taylor series terms instead of a subset of those and by exploiting the ability of neural networks to capture more complex and nonlinear behaviour for the efficient development of a continuous flight simulation model valid across the entire envelope. This method is valid for fixed- and rotary-wing aircraft. The behaviour of a conventional model is compared to FlyNet using flight test data collected from the National Research Council of Canada’s Bell 412HP in forward flight.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modeling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献