Enriched continuum for multi-scale transient diffusion coupled to mechanics

Author:

Waseem Abdullah,Heuzé Thomas,Stainier Laurent,Geers Marc G. D.,Kouznetsova Varvara G.

Abstract

AbstractIn this article, we present a computationally efficient homogenization technique for linear coupled diffusion–mechanics problems. It considers a linear chemo-mechanical material model at the fine scale, and relies on a full separation of scales between the time scales governing diffusion and mechanical phenomena, and a relaxed separation of scales for diffusion between the matrix and the inclusion. When the characteristic time scales associated with mass diffusion are large compared to those linked to the deformation, the mechanical problem can be considered to be quasi-static, and a full separation of scales can be assumed, whereas the diffusion problem remains transient. Using equivalence of the sum of virtual powers of internal and transient forces between the microscale and the macroscale, a homogenization framework is derived for the mass diffusion, while for the mechanical case, considering its quasi-static nature, the classical equivalence of the virtual work of internal forces is used instead. Model reduction is then applied at the microscale. Assuming a relaxed separation of scales for diffusion phenomena, the microscopic fields are split into steady-state and transient parts, for which distinct reduced bases are extracted, using static condensation for the steady-state part and the solution of an eigenvalue problem for the transient part. The model reduction at the microscale results in emergent macroscopic enriched field variables, evolution of which is described with a set of ordinary differential equations which are inexpensive to solve. The net result is a coupled diffusion–mechanics enriched continuum at the macroscale. Numerical examples are conducted for the cathode–electrolyte system characteristic of a lithium ion battery. The proposed reduced order homogenization method is shown to be able to capture the coupled behavior of this system, whereby high computational gains are obtained relative to a full computational homogenization method.

Funder

Education, Audiovisual and Culture Executive Agency

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Engineering (miscellaneous),Modeling and Simulation

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3