Author:
Deep Pratibha Rani,Bhattacharyya Shantanu,Nayak Binata
Abstract
Abstract
Background
Cyanobacteria are common components of phytoplankton communities in most freshwater ecosystems. Proliferations of cyanobacteria are often caused by high nutrient loading, and as such can serve as indicators of declining water quality. Massive industrialization in developing countries, like India, has polluted fresh water bodies, including wetlands. Many industries directly discard their effluents to nearby water sources without treatment. In the Sambalpur District of India effluents reach the reservoir of the worlds largest earthen dam i.e Hirakud Dam. This study examines cyanobacteria communities in the wetlands of Sambalpur District, Odisha, India, including areas subjected to industrial pollution.
Result & Discussion
The genera Anabaena, Oscillatoria, Chroococcus, Phormidium were dominant genera of polluted wetlands of Sambalpur districts. A positive correlation was found between total cyanobacterial species and dissolved oxygen levels, but cyanobacterial diversity was inversely related to BOD, COD, TSS, and TDS. High dissolved oxygen content was also associated with regions of lower cyanobacteria biomass.
Conclusion
Cyanobacterial abundance was positively correlated to content of oxidisable organic matter, but negatively correlated to species diversity. Lower dissolved oxygen was correlated to decreased diversity and increased dominance by Anabaena, Oscillatoria, Chroococcus, Phormidium species, observed in regions characterized by deteriorated water quality.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Aquatic Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference40 articles.
1. Muthukumar C, Muralitharan G, Vijayakumar R: Cyanobacterail biodiversity from different freshwater ponds of Thanjavur, Tamilnadu (India). Acta Botanica Malcitana. 2007, 32: 17-25.
2. Bhattacharyya S, Nayak B, Choudhury NK: Response of Diaztoropic Cyanobacteria Nostoc carneum under pesticide and UV-B stress. Chemosphere. 2011, 84: 131-135. 10.1016/j.chemosphere.2011.02.031.
3. Adhikary SP: Utilization of region specific cyanobacteria as biofertilizer for rice-a case study from Orissa; Conference paper. Biotechnol Micr Sustainable Utilization. 2002, 47-56.
4. Bhatnagar A, Makandar MB, Garg MK, Bhatnagar M: Community structure and diversity of cyanobacteria and green algae in the soils of Thar Desert (India). J Arid Environ. 2008, 72: 73-83. 10.1016/j.jaridenv.2007.05.007.
5. Deepa P, Jeyachandran S, Manoharan C, Vijayakumar S: Survey of Epilithic Cyanobacteria on the temple walls of Thanjavur District, Tamilnadu, India. World J Sci Technol. 2011, 1 (9): 28-32.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献