The CsMYB123 and CsbHLH111 are involved in drought stress-induced anthocyanin biosynthesis in Chaenomeles speciosa

Author:

Ren Yanshen,Zhang Shuangyu,Zhao Qianyi,Wu Yang,Li Houhua

Abstract

AbstractDrought stress has been demonstrated to enhance the biosynthesis of anthocyanins in the leaves, resulting in an increased aesthetic appeal. However, the molecular mechanisms underlying drought-induced anthocyanin biosynthesis in Chaenomeles speciosa remain unclear. In this study, the metabolites of C. speciosa leaves were analyzed, and it was found that the content of cyanidin-3-O-rutinoside increased significantly under drought stress. The differentially expressed genes CsMYB123 and CsbHLH111 were isolated by transcriptomics data analysis and gene cloning, and gene overexpression and VIGS experiments verified that both play important roles in anthocyanin biosynthesis. Subsequently, Y1H and Dual-luciferase reporter assay showed that CsMYB123 binds to the promoters of anthocyanin biosynthesis-related structural genes (such as CsCHI, CsF3H, and CsANS), while CsbHLH111 was shown to bind to the promoter of CsCHI, positively regulating its activity. Furthermore, BIFC and Y2H assays unveiled potential protein–protein interactions between CsMYB123 and CsbHLH111 at the cell nucleus. Collectively, these results shed light on the critical roles played by CsMYB123 and CsbHLH111 in anthocyanin biosynthesis, thus providing a valuable insight into understanding the molecular mechanisms of how the MYB and bHLH genes regulate anthocyanin biosynthesis in the process of leaf coloration in C. speciosa. Graphical Abstract

Funder

National Natural Science Foundation of China

Plant resources of Rosaceae in the Qinling Mountains Research on investigation, evaluation, development and utilization

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3