Author:
Jahangiri Mehdi,Adl Javad,Shahtaheri Seyyed Jamaleddin,Rashidi Alimorad,Ghorbanali Amir,Kakooe Hossein,Forushani Abbas Rahimi,Ganjali Mohammad Reza
Abstract
Abstract
In this study a composite of activated carbon and carbon nanofiber (AC/CNF) was prepared to improve the performance of activated carbon (AC) for adsorption of volatile organic compounds (VOCs) and its utilization for respirator cartridges. Activated carbon was impregnated with a nickel nitrate catalyst precursor and carbon nanofibers (CNF) were deposited directly on the AC surface using catalytic chemical vapor deposition. Deposited CNFs on catalyst particles in AC micropores, were activated by CO2 to recover the surface area and micropores. Surface and textural characterizations of the prepared composites were investigated using Brunauer, Emmett and Teller’s (BET) technique and electron microscopy respectively. Prepared composite adsorbent was tested for benzene, toluene and xylene (BTX) adsorption and then employed in an organic respirator cartridge in granular form. Adsorption studies were conducted by passing air samples through the adsorbents in a glass column at an adjustable flow rate. Finally, any adsorbed species not retained by the adsorbents in the column were trapped in a charcoal sorbent tube and analyzed by gas chromatography. CNFs with a very thin diameter of about 10-20 nm were formed uniformly on the AC/CNF. The breakthrough time for cartridges prepared with CO2 activated AC/CNF was 117 minutes which are significantly longer than for those cartridges prepared with walnut shell- based activated carbon with the same weight of adsorbents. This study showed that a granular form CO2 activated AC/CNF composite could be a very effective alternate adsorbent for respirator cartridges due to its larger adsorption capacities and lower weight.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology,Environmental Engineering
Reference30 articles.
1. Heidari HR, Shahtaheri SJ, Golbabaei F, Alimohammadi M, Rahimi-Froshani A: Optimization of headspace solid phase microextraction procedure for trace analysis of toluene. Int J Occup Saf Ergon. 2008, 14 (4): 395-405.
2. Heidari HR, Shahtaheri SJ, Golbabaei F, Alimohammadi M, Rahimi-Froshani A: Trace analysis of xylene in occupational exposures monitoring. Iranian Journal of Public Health. 2009, 38: 89-99.
3. Prakash J, Nirmalakhandan N, Speece RE: Prediction of activated carbon adsorption-isotherms for organic vaprs. Environ Sci Technol. 1994, 28: 1403-1409. 10.1021/es00057a005.
4. Mohan N, Kannan GK, Upendra S, Subha R, Kumar NS: Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor. J Hazard Mater. 2009, 168: 777-781. 10.1016/j.jhazmat.2009.02.079.
5. Moyer ES, Smith SJ, Wood GO: Carbon tetrachloride replacement compounds for organic vapor air-purifying respirator cartridge and activated carbon testing - a review. Aihaj. 2001, 62: 494-507. 10.1202/0002-8894(2001)062<0494:CTRCFO>2.0.CO;2.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献