Author:
Kakavandi Babak,Jonidi Ahmad,Rezaei Roshanak,Nasseri Simin,Ameri Ahmad,Esrafily Ali
Abstract
Abstract
In this study, powder activated carbon (PAC) and magnetic nanoparticles of iron (III) oxide were used for synthesis of Fe3O4-activated carbon magnetic nanoparticles (AC-Fe3O4 MNPs) as an adsorbent for the removal of aniline. The characteristics of adsorbent were evaluated by SEM, TEM, XRD and BET. Also, the impact of different parameters such as pH, contact time, adsorbent dosage, aniline initials concentration and solution temperature were studied. The experimental data investigated by Langmuir and Freundlich adsorption isotherms and two models kinetically of pseudo first-order and pseudo second-order. The results indicated that the adsorption followed Langmuir and pseudo second-order models with correlation r2 > 0.98 and r2 > 0.99, respectively. The equilibrium time was obtained after 5 h. According to Langmuir model, the maximum adsorption capacity was 90.91 mg/g at pH = 6, and 20°C. The thermodynamic parameters indicated that adsorption of aniline on magnetic activated carbon was exothermic and spontaneous. This synthesized AC-Fe3O4 MNPs due to have advantages such as easy and rapid separation from solution could be applied as an adsorbent effective for removal of pollutants such as aniline from water and wastewater.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology,Environmental Engineering
Reference31 articles.
1. Qi XH, Zhuang YY, Yuan YC, Gu WX: Decomposition of aniline in Supercritical water. J Hazard Mater. 2002, 90 (14): 51-62.
2. Tang HQ, Li J, Bie Y, Zhu L, Zou J: Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery. J Hazard Mater. 2010, 175 (1–3): 977-984.
3. Kamble SP, Sawant SB, Schouten JC: Photocatalytic and photochemical degradation of aniline using concentrated solar radiation. J Chem Technol Biotechnol. 2003, 78: 865-872. 10.1002/jctb.867.
4. Guang-Qian W, Zhang X, Hui H: Adsorptive removal of aniline from aqueous solution by oxygen plasma irradiated bamboo based activated carbon. J Chem Eng. 2012, 185–186: 201-210.
5. Li JM, Jin ZX: Effect of hypersaline aniline-containing pharmaceutical wastewater on the structure of activated sludge-derived bacterial community. J Hazard Mater. 2009, 172: 432-438. 10.1016/j.jhazmat.2009.07.031.
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献