Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads

Author:

Dehghanifard Emad,Jonidi Jafari Ahmad,Rezaei Kalantary Roshanak,Mahvi Amir Hosein,Faramarzi Mohammad Ali,Esrafili Ali

Abstract

Abstract Many organic hazardous pollutants, including 2,4-dinitrophenol (2,4-DNP), which are water soluble, toxic, and not easily biodegradable make concerns for environmental pollution worldwide. In the present study, degradation of nitrophenols-contained effluents by using laccase immobilized on the nano-porous silica beads was evaluated. 2,4-DNP was selected as the main constituent of industrial effluents containing nitrophenols. The performance of the system was characterized as a function of pH, contact time, temperature, pollutant, and mediator concentrations. The laccase-silica beads were employed in a mixed-batch reactor to determine the degradation efficiency after 12 h of enzyme treatment. The obtained data showed that the immobilized laccase degraded more than 90% of 2,4-DNP within 12 h treatment. The immobilization process improved the activity and sustainability of laccase for degradation of the pollutant. Temperatures more than 50°C reduced the enzyme activity to about 60%. However, pH and the mediator concentration could not affect the enzyme activity. The degradation kinetic was in accordance with a Michaelis–Menten equation with Vmax and Km obtained as 0.25–0.38 μmoles/min and 0.13–0.017 mM, respectively. The stability of the immobilized enzyme was maintained for more than 85% of its initial activity after 30 days. Based on the results, it can be concluded that high resistibility and reusability of immobilized laccase on CPC-silica beads make it considerable choice for wastewater treatment.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

Reference35 articles.

1. Shukla SS, Dorris KL, Chikkaveeraiah BV: Photocatalytic degradation of 2, 4-dinitrophenol. J Hazard Mater. 2009, 164 (1): 310-314. 10.1016/j.jhazmat.2008.08.047.

2. Ahmadi Moghaddam M, Mesdaghinia A, Naddafi K, Nasseri S, Mahvi AH, Vaezi F: Degradation of 2, 4-dinitrophenol by photo fenton process. Asian J Chem. 2010, 22 (2): 1009-1016.

3. Harris MO, Cocoran J: Toxicological profile for dinitrophenols. 1995, Atlanta: Agency for Toxic Substances and Disease Registry

4. Dai R, Chen J, Lin J, Xiao S, Chen S, Deng Y: Reduction of nitro phenols using nitroreductase from E. coli in the presence of NADH. J Hazard Mater. 2009, 170 (1): 141-143. 10.1016/j.jhazmat.2009.04.122.

5. She ZL, Xie T, Li LL, Zhu YJ, Tang GF, Zhao YG: Study on the aerobic degradation kinetics of 2, 4-DNP and 2, 6-DNP. Adv Mater Res. 2012, 356: 186-189.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3