Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology

Author:

Taheri Mahsa,Moghaddam Mohammad Reza Alavi,Arami Mokhtar

Abstract

Abstract This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

Reference30 articles.

1. Rezaee A, Ghaneian MT, Khavanin A, Hashemian SJ, Moussavi GH, Ghanizadeh GH, Hajizadeh E: Photochemical oxidation of reactive blue 19 dye (RB19) in textile wastewater by UV/K2S2O8 process. Iran J Environ Health Sci Eng. 2008, 5 (2): 95-100.

2. Sadri Moghaddam S, Alavi Moghaddam MR, Arami M: Decolorization of an acidic dye from synthetic wastewater by sludge of water treatment plant. Iran J Environ Health Sci Eng. 2010, 7 (5): 437-442.

3. Ehrampoush MH, Ghanizadeh GH, Ghaneian MT: Equilibrium and kinetics study of reactive Red 123 dye removal from aqueous solution by adsorption on eggshell. Iran J Environ Health Sci Eng. 2011, 8 (2): 101-108.

4. Mohammadian Fazli M, Mesdaghinia AR, Naddafi K, Nasseri S, Yunesian M, Mazaheri Assadi M, Rezaie S, Hamzehei H: Optimization of reactive blue 19 decolorization by ganoderma sp. using response surface methodology. Iran J Environ Health Sci En. 2010, 7 (1): 35-42.

5. Hasani Zonoozi M, Alavi Moghadam MR, Arami M: Removal of acid red 398 dye from aqueous solutions by coagulation/flocculation pocess. J Environ Eng & Manage. 2008, 7 (6): 695-699.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3