Study of Mo (VI) removal from aqueous solution: application of different mathematical models to continuous biosorption data

Author:

Kafshgari Fatemeh,Keshtkar Ali Reza,Mousavian Mohammad Ali

Abstract

Abstract Molybdenum (VI) biosorption process was investigated by marine algae Cystoseria indica pretreated with 0.1 M CaCl2 solution in a packed bed column. The biosorbent was characterized by FTIR, BET and SEM analyses. The results showed that Mo (VI) ions should be chelated with the hydroxyl, carboxyl and amine groups of the biomass. The effects of inlet metal concentration and flow rate on biosorption process were investigated and the experimental breakthrough curves were obtained. Results showed that the maximum biosorption capacity of Ca-pretreated C. indica for Mo (VI) was found to be 18.32 mg/g at optimum flow rate of (1.4 mL/min). The controlled-rate step shifted from external to internal mass transfer limitations, as the flow rate increased. Also, it was observed that the breakthrough and exhaustion time decreased from 17.14 hr to 9.05 hr and from 0.006 h to 0.002 hr respectively, with the increase of flow rate from 0.7 to 2.1 ML/min. The increase in the initial concentration of Mo (VI) solution from 30 to 95 ml min-1 increases the adsorption capacity from 18.32 to 30.19 mg/g and decreases the percentage of Mo (VI) removal from 61 to 38%. Also, the treated volume was the greatest (1.42 L) at the lowest inlet concentration. Column data obtained under different conditions were described using the Thomas, Yoon and Nelson, Yan and Belter models. The breakthrough curve predictions by Belter model were found to be very satisfactory.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology,Environmental Engineering

Reference40 articles.

1. Barkhordar B, Ghiasseddin M: Comparision of Langmuir and Freundlich Equilibriums in Cr, Cu and Ni Adsorption by Sargassum Iran. J Environ Health Sci Eng. 2004, 1: 58-64.

2. Sayler GS, Nelson JD, Colwell J, Colwell RR: Role of Bacteria in bioaccumulation of mercury in the Oyster Crassostrea virginica. Appl Microbiol. 1975, 30 (1): 91-96.

3. Nabizadeh R, Naddafi K, Saeedi R, Mahvi AH, Vaezi F, Yaghmaeian K, Nazmara S: Kinetic and equilibrium studies of Lead and Cadmium biosorption from aqueous solutions by SARGASSUM SPP. BIOMASS. Iran J Environ Health Sci Eng. 2005, 2: 159-168.

4. Volesky B, Holan Z: Biosorption of heavy metals. Biotechnol Prog. 1995, 11: 235-250. 10.1021/bp00033a001.

5. Kapoor A, Viraghavan T: Fungal Biosorption-an alternative treatment option for heavy metal bearing wastewater: a review. Bioresour Technol. 1995, 53: 195-206.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3