Author:
Dehghani Somayyeh,Jonidi Jafari Ahmad,Farzadkia Mahdi,Gholami Mitra
Abstract
Abstract
Presence of antibiotics in the environment may cause potential risk for aquatic environment and organisms. In this research, Fenton oxidation process was offered as an effective method for removal of antibiotic sulfamethoxazole from aqueous solutions. The experiments were performed on laboratory-scale study under complete mixing at 25±2°C. The effects of initial antibiotic concentration, molar ratio of H2O2/Fe+2, solution pH, concentration of H2O2, Fe+2 and reaction time was studied on the oxidation of sulfamethoxazole in three level. The results indicated that the optimal parameters for Fenton process were as follows: molar ratio of [H2O2]/[Fe+2] = 1.5, pH= 4.5, and contact time= 15 min. In this situation, the antibiotic removal and COD reduction were achieved 99.99% and 64.7-70.67%, respectively. Although, Fenton reaction could effectively degrade antibiotic sulfamethoxazole under optimum experimental conditions, however, the rate of mineralization was not completed. This process can be considered to eliminate other refractory antibiotics with similar structure or to increase their biodegradability.
Publisher
Springer Science and Business Media LLC
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Water Science and Technology,Environmental Engineering
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献