Impaired Hepatic Ketogenesis in Moderately Obese Men With Hypertriglyceridemia

Author:

Vega Gloria Lena,Dunn Fredrick L.,Grundy Scott M.

Abstract

BackgroundSeveral studies suggest that increased nonesterified fatty acid flux and increased de novo lipogenesis may contribute to hypertriglyceridemia, but few studies have examined fatty acid oxidation as a factor.RationaleEndogenous hypertriglyceridemia (increased very low density lipoprotein triglyceride) could result from (a) re-esterification of excess nonesterified fatty acids entering the liver, (b) activation of hepatic lipogenesis, and/or (c) defective oxidation of hepatic fatty acids leading to greater triglyceride synthesis. Therefore, this study used plasma levels of 3-hydroxybutyrate as a marker for fatty acid oxidation. The study was carried out in hypertriglyceridemic and normotriglyceridemic subjects under 3 conditions: (a) in the fasting state, (b) after a fatty meal that should enhance fatty acid oxidation, and (c) after an oxandrolone challenge, which we recently showed increases fatty acid oxidation.ResultsIn the fasting state, 3-hydroxybutyrate concentrations in hypertriglyceridemic patients were only 53% of levels in normotriglyceridemic subjects. After a fatty meal, moderate increases in 3-hydroxybutyrate were observed, but values for patients with hypertriglceridemia remained 62% of the levels in the normotriglyceridemic group. A similar pattern of response was observed with oxandrolone challenge. There were no significant changes in fasting or postprandial levels of nonesterfified fatty acids, glycerol, or triglycerides before and during the oxandrolone challenge.ConclusionPatients with endogenous hypertriglyceridemia seem to have a defect in fatty acid oxidation as indicated by reduced levels of 3-hydroxybutyrate. This defect was observed during fasting, postprandially, and during oxandrolone challenge. We propose that this defect contributes to the development of hypertriglyceridemia.

Publisher

BMJ

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3